Towards accurate coarse-grained simulations of disordered proteins and dynamic protein interactions

Chen Lab Yumeng Zhang

Orderly Chaos of Intrinsically Disordered Proteins Rely on structural disorder for function Crucial in cellular regulation and signaling Can fold or remain dynamic upon binding

KID/CREB Complex

N-terminal Domain of p53 (p53-TAD)

p53-TAD/CypD Complex

- Not amendable to traditional ensemble-based experiments
- Structural prediction tools, including <u>AlphaFold</u>, are not applicable to disordered proteins

Molecular Dynamic Simulations: The 'Net' to Capture IDPs

• Ensembles for p53-TAD/EGCG complex

• MD simulation for protein dynamics.

Nature Communications (2020)

https://www.umass.edu/news/article/2-million-nih-mira-grant-willsupport-trailblazing-research-umass-amherst-lab MD provides the heterogeneous structural ensemble to analyze IDP functions.

Computational Cost of Atomistic MD Can Be Prohibitive

p53-TAD/EGCG

Nature Communications (2020) https://www.umass.edu/news/article/2-million-nih-mira-grant-willsupport-trailblazing-research-umass-amherst-lab

~100,000 atoms in the actual box!

Coarse-Grained Modeling of Protein Dynamics

• CG models can more efficiently explore the energy landscape.

- Balance between coarse-graining and accuracy
- CG models designed for folded proteins are not appropriate for disordered proteins
- > Key IDP properties: residual local structures and transient long-range interactions

HyRes: A CG Model for IDP Simulations

Hybrid-Resolution (HyRes) Model:

- Atomistic representation for backbone atoms.
- Coarse-grained sidechains up to five beads resolution.
- Physics-based energy terms.

$$U_{\text{HyRes}} = U_{\text{bond}} + U_{\text{angle}} + U_{\text{dihedral}} + U_{\text{improper}} + U_{\text{CMAP}} + U_{\text{LJ}} + U_{\text{Hbond}} + U_{\text{elec}}$$

Semi-quantitively 2nd structural profile descriptions.

Qualitatively long-range interaction characterizations.

Phys. Chem. Chem. Phys (2017)

HyRes is ~ 3,000 Faster Than Atomistic Models

 $H^{E} \xrightarrow{\mathbb{Z}} \mathbb{Z} \xrightarrow{\mathbb{Z}} \xrightarrow{\mathbb{Z}} \mathbb{Z} \xrightarrow{\mathbb{Z}} \xrightarrow{\mathbb{$

- Achieves ~ 100 times faster than all-atom GPU in per nanosecond simulations.
- Achieves ~ 3000 times faster in generating converged trajectories for analysis.

Over Compaction of IDPs in HyRes $H = U_{\text{bond}} + U_{\text{angle}} + U_{\text{dihedral}} + U_{\text{improper}} + U_{\text{CMAP}} + U_{\text{LJ}} + U_{\text{Hbond}} + U_{\text{elec}}$ $1.2 + U_{\text{HyRes}} = U_{\text{bond}} + U_{\text{angle}} + U_{\text{dihedral}} + U_{\text{improper}} + U_{\text{CMAP}} + U_{\text{LJ}} + U_{\text{Hbond}} + U_{\text{elec}}$ $1.2 + U_{\text{HyRes}} + U_{\text{comistic}} + U_{\text{comis$

HyRes II: Design and Optimization

Disordered Ensembles of p53-TAD in HyRes II

- HyRes II generated disordered ensembles are highly consistent with various experimental data from NMR, SAXS etc
- It quantitively captures key local and global structural properties of IDPs

HyRes II Simulation of Dynamic p53-TAD/DBD Interactions

1 61 NTAD				
1 6	1 9	95		312
NTAD	PRD		DNA-Binding Domain	

Two subdomains on TAD: <u>AD1</u> and <u>AD2</u>, can dynamically interact with DBD.

TAD of p53 can regulate DBD signaling. • HyRes II correctly characterized the transient interactions.

The Main Binding Subdomain: AD2

Two subdomains on TAD: AD1 and AD2, can dynamically interact with DBD.

13

TAD of p53 can regulate DBD signaling. • HyRes II correctly characterized the transient interactions.

S1~S4: TAD randomly bind to DBD at initial. S5~S8: TAD is fully extended at initial.

The Main Binding Subdomain: AD2

- TAD of p53 can regulate DBD signaling. HyRes II correctly characterized the transient interactions.

Two subdomains on TAD: <u>AD1</u> and <u>AD2</u>, can dynamically interact with DBD.

HyRes II for Studying Protein Nanopore Tweezers

- in ClyA Nanopore.
 - NS2B/NS3 S.typhi ClyA
- Exploring Proteases Dynamics
 Engineering ClyA pore to stably capture proteases functional dynamics.

(By: Spencer Shorkey)

Summary & Future Plan

HyRes II is

- a highly accurate coarse-grained protein model for simulation of dynamic proteins and their interactions
- highly efficient for studying larger biological systems (e.g., protein nanopores)

HyRes II will

- be applied to studying flaviviral proteases in protein nanopores.
- be further optimized for more complex biological problems such as liquid-liquid phase transitions.

Acknowledgment

Chen Lab Members:

Specific Thanks to:

Dr. Xiaorong Liu Xiping Gong

Committee members:

Prof. Jianhan Chen Prof. Min Chen Prof. Scott Auerbach Prof. Greg Grason

TAD Remains Highly Dynamic

• Highly unfolded in bound state.

- TAD can compete over non-specific DNA bindings to DBD.
- There is no DNA-like helical conformation requirements for DBD binding.