

Stabilizing RNA Aptamers in Mammalian Cells via Protein-Mediated Circularization

An Original Research Proposal Presented By Yumeng Zhang

Jianhan Chen Research Group

Dec 13, 2021

[Research Update]\$ Multi-scale simulations for IDP studies

Objective:

 Characterize the conformation and dynamics of intrinsically disordered proteins with MD simulations.

IDP Conformational Landscape

- ✤ IDP high structural heterogeneity.
- IDP high dynamics.
- Timescales of IDP conformational fluctuations.

Method:

- Speed up the atomistic simulations with enhanced sampling method: **REST** (Replica Exchange with Solute Tempering)
- 2. Realize long-time scale simulations using coarse-grained model: **HyRes** (Hybrid Resolution)

Specific Aims:

- 1. Resolve the high temperature collapse in REST2.
- 2. Solve the over-compactness in HyRes model.

Approaches:

1. Develop REST3 method:

Re-balance the protein-water interactions, which is underestimated in REST2 high temperatures.

- 2. Develop HyRes2 force field
 - a. Downscale the protein-protein intra-interactions.
 - b. Introduce the implicit solvent SASA model.
 - c. Re-adjust the hydrogen bonding strength.

[Research Update]\$ Multi-scale simulations for IDP studies

1. REST3

Work for KID (28 residues)

- 1. Faster convergence rate than REST2.
- 2. More conformational space sampled.

• Need to re-calibrate the p-w/p-p interactions.

[Research Update]\$ Multi-scale simulations for IDP studies

2. HyRes2

Preliminary data

1.2

1.0

0.8

0.6

0.4

0.2

0.0

10

- 1. More extended conformation for large IDPs (61 res).
- 2. More accurate protein-protein inter/intra interactions.
- More conformational space sampled for large system (~ 400 residues).

PDBID	Chain Length	Ref (EED, Å)	HyRes (EED, Å)	HyRes II (EED, Å)	Ref (R _g , Å)	HyRes (R _g , Å)	HyRes II (R _g , Å)
1VII	36	25.97	13.74 ± 0.04	18.07 ± 0.2	10.80	9.49 ± 0.02	11.04 ± 0.04
1BDC	46	20.69	19.87 ± 0.27	26.87 ± 0.09	9.95	10.42 ± 0.02	12.77 ± 0.07
3GB1	56	9.24	17.82 <u>+</u> 0.54	25.86 ± 0.05	9.80	11.04 ± 0.02	13.31 ± 0.03
KID	28	~ 29	17.81 <u>+</u> 0.12	22.87 ± 0.2	~ 11	9.18 <u>+</u> 0.1	10.95 ± 0.12
NTAD	70	~ 70	19.71 ± 0.15	45.78 ± 2.49	~23.8	16.39	23.57 ± 0.33

[Research Update]\$ ClyA/NS2B-NS3 simulations

Objective:

• Explore the dynamics of NS2B-NS3 in ClyA nanopore.

- ✤ Large and complicated system.
- Conformational dynamics of proteases.

Method:

- 1. HyRes model.
- 2. Steered MD.

Specific Aims:

Future Work:

- 1. Resolve the dynamics of proteases at atomistic level.
- 2. Trap protease at mid-trap state then explore the ligand binding interactions.
- 1. Resolve pore-protease interactions at atomistic level.
- 2. Gain insight on the dynamic of proteases in ClyA.

Preliminary data:

- 1. One potential trapping site on the mid-region of ClyA.
- 2. Apo state is easier to have translocation events.
- 3. Two potential conformations of proteases when being trapped at the constriction region.

ntroduction & Significance

pproaches

im 1: Encoding circular RNA in mammalian cells. *Aim 1a*: Encode Broccoli with 5' cap and 3' poly(A) tail. *Aim 1b*: Characterize hcBroccoli in cells.

im 2: Functional evaluation of encoded RNAs. *Aim 2a*: Evaluate hcBroccoli functionalities. *Aim 2b*: Examine cytotoxicity of hcBroccoli.

im 3: More generalized expression systems. *Aim 3a*: Poly(A) independent cgMAGIC system. *Aim 3b*: Cap independent atMAGIC system. *Aim 3c*: Protein independent gMAGIC system.

Mathematical Introduction

RNA Biodevices

a. Biosensing

b. Gene regulation

RNA aptamers

a. Can selectively bind to target with high affinity

RNA aptamer	Fluorophore	$K_{\rm D}$ (nM)	$E_{\rm x}/E_{\rm m}$ (nm)	$\epsilon (\mathrm{M}^{-1} \mathrm{cm}^{-1})$	Φ	Length (nt)
Spinach	DFHBI	540	469/501	24 300	0.72	98
Spinach2	DFHBI-1T	560	482/505	31 000	0.94	95
Spinach2	DFHBI	530	447/501	22 000	0.72	95
Spinach2	DFHBI-2T	1300	500/523	29 000	0.12	95
Spinach2	DFHBI-CM	N/A	447/502	N/A	N/A	95
Broccoli	DFHBI-1T	360	472/507	29 600	0.94	49
Broccoli	BI	51	470/505	33 600	0.67	49
Red Broccoli	DFHO	206	518/582	35 000	0.34	49
Orange Broccoli	DFHO	230	513/562	34 000	0.28	49
Red Broccoli	OBI	23	541/590	47 300	0.67	54

b. Can be identified by SELEX

(Systematic evolution of ligands by exponential enrichment)

Versatile applications. Generalizable for

various targets.

Genetically encodability.

> Nanoscale, **2021**, 13, 7988 Int. J. Mol. Sci. **2017**, *18*(10), 2142

Significance & Innovation

In vitro synthetic RNA aptamers

- Challenges
 - Delivery.
 - a. Susceptibility to degradations in vivo.
 - b. Poor intracellular uptake.
 - c. Immunogenicity and cytotoxicity.
 - d. Molecular weight confined.
 - Intracellular concentration.

Genetically encoded RNA aptamers

- Advantages
 - Easy to implement.
 - No delivery system required.
 - Intracellular concentration maintainable.
 - Functionalities unaffected.
- Challenges

High susceptibility to degradations in mammalian cells. Only be applied to bacteria.

Feasible approaches

Engineer the encoded RNA via capping, protein binding, or circularization.

<u>Rational</u>: Mimic the natural RNA self-protection approaches to resist enzymatic degradations triggered by RNases or exonucleases.

One successful case: a high efficient circular RNA expression system: **Tornado system**.

<u>**Our goal</u>**: design <u>MAGIC</u> expression system that can protect RNAs via protein bindings and protein-mediated circularization.</u>

Instable aptamers in mammalian cells.

Chem Biol. 2015 May 21;22(5):649-60

Nat Commun 9, 2629 (2018)

Circularization stabilizes RNA.

Biogenesis of circular RNAs (A,B)

Tornado expression system

Tornado system encodes circular RNA aptamers

Functionable.

✤ Longer lifespans.

Highly twister-ribozyme dependent.

✤ Higher intracellular concentrations.

RNA expression system

✤ Non-cytotoxicity.

Limitations of Tornado expression system

Twister-ribozyme aided self-cleavage --- S_N2-related mechanism.

a. Highly conformational restricted: A stem-loop, two internal loops.

mRNA circularization and analogous MAGIC system

mRNA

- Average ~10 h half-lifetime.
- Have m⁷G cap group protecting 5' terminal.
- Have a poly(A) tail protecting 3' terminal.
- Spontaneously cyclize in cytoplasm.

Pol II

promoter

Pausing

Broccoli seq

Class II transcription ΑΑΤΑΑΑ

PAS

Pol II

terminator

mRNA biogenesis mechanism: Class II transcriptions

Terminal decoration basis: Class II transcriptions

Co-transcriptional processes:

- ✤ Capping
- Polyadenylation

Our objective:

✤ Initiate Class II transcriptions with Promoter II.

Recruit the pre-initiation complex (PIC).

Ensure capping.

At pausing stage.

Ensure polyadenylation.

Class II transcription: Initiation (PIC and Pol II recruitment)

Polymerase II promoter: TATA box (~ 20 nt upstream from Initiator)

The pathway of transcription initiation

✤ PIC components & functions

PNAS January 7, **1997** 94 (1) 15-22 *Nat Struct Mol Biol* 11, 394–403 (**2004**)

Table 1. General class II transcription initiation factors from human cells

Factor		Subunits, kDa	(no.)	Function
TEIID	∕TBP	38	(1)	Binds to TATA, promotes TFIIB binding
	∖TAFs*	15-250	(12)	Regulatory functions $(+ \text{ and } -)$
TFIIB		35	(1)	Promotes TFIIF-pol II binding
TFIIF		30, 74	(2)	Targets pol II to promoter
RNA pol II		10 - 220	(12)	Catalytic function
TFIIE		34, 57	(2)	Stimulates TFIIH kinase and ATPase activities
TFIIH		35-89	(9)	Helicase, ATPase, CTD kinase activities
All class II GTFs	5	> 2 MDa	(>42)	

TATA & TFs bindings

Co-transcriptions: 5' Capping and 3' polyadenylation

Second Capping

- ✤ The canonical capping mechanism
 - a. Pausing period.

Polyadenylation

- Minimal requirement: PAS site
 - a. Final stage, coupled with cleavage.
 - b. PAS, AAUAAA, can be specifically recognized by the cleavage and polyadenylation specificity factor (CPSF) complex.

Nat Struct Mol Biol 25, 135–138 (2018) Biochimie. 2019 Sep;164:105-110 FEBS Lett. 2014 Jun 27;588(14):2185-97.

AIM1a: Design a template DNA sequence for MAGIC

PAS

promoter

Pol II

terminator

5' UTR Cyclization region 3' UTR Poly(A) tail

AIM1a: Characterizations of Class II transcription initiation

2. Characterize the initiation of class II transcriptions

J Biol Chem. 2017 Jul 14;292(28):11873-11885 Biochemistry. 2012 Sep 25;51(38):7444-55.

S: G or C

Method: FRET

(Förster resonance energy transfer)

Mechanism:

TBP-induced DNA bending.

Oligo	Sequence (5' to 3')	
Consensus TATA donor	CTATAAAAG	
Consensus TATA acceptor	CTTTTATAG	
Fluorophore Donor:	Alexa 555	
Fluorophore Acceptor:	Alexa 647	
TATA-less donor	TAGAGTCGG	
TATA-less acceptor	CCGACTCTA	

Expected outcome: TBP causes an increase in FRET efficiency.

+ DPE: Downstream promoter region

AIM1a: Characterization of Capping event

3. Characterize the 5' end capping process

Nat Genet 50, 1533–1541 (**2018**) Epigenetics & Chromatin 9, 32 (**2016**) Nat Rev Genet 20, 705–723 (**2019**)

Method: CoPRO

(Coordinated Precision Run-On and sequencing)

Experimental details:

Expected outcome: Capping CoPRO signal.

If there is no capping event:

<u>Rational:</u> strengthen the pausing event, elongate the probable capping time for capping-related enzyme complex recruiting.

AIM1a: Characterization of Polyadenylation

4. Characterize the 3' end polyadenylation

Nat Genet 50, 1533–1541 (**2018**) Epigenetics & Chromatin 9, 32 (**2016**)

Method: TAIL-seq

Experimental details:

Experimental procedure for TAIL-seq Total RNA > 200 nt, rRNA-depleted Messenger RNA short ncRNA , 3' adaptor ligation AAA.. Partial digestion with RNase T1 Pull-down with streptavidin 5' end phosphorylation Gel purification (500 - 1000 nt)5' adaptor ligation RT. PCR. and sequencing Read 1 (51 nt) AAA.. Read 2 (251 nt)

Expected outcome: poly(A) tail signal with length > 120 nt.

Example of TAIL-seq tags

If poly(A) tail is not transcribed with expected length:

- PAS optimizations
 - + T-rich region
 - + T/GT rich region
 - + G-rich region

- --TGTATTAATAAA-CA-GTGTGTTGGTTTTTTGTGTG
- Append a poly(A) tail on template DNA directly

Length controllable!

Wiley Interdiscip Rev RNA. **2012** May-Jun;3(3):385-96. *GEnes Dev*. **1989** Jul;3(7):1019-25.

hcBroccoli spontaneous circularization

AIM1b: Characterization the circularization of hcBroccoli

Proximity characterization

Method: Atomic Force microscope (AFM).

Expected Outcome: Circular RNA/Protein complexes.

<u>Rational:</u>

- 1. PABP will bind to poly(A) tail in nuclear and help transportation.
- 2. eIF4G-PABP, eIF4E-eIF4G can bind in relative fast rates.
- 3. Human mRNA can translate peptides with a circular form soon after being transported into cytoplasm. (~ s⁻¹)
- 4. hcBroccoli has all circularization required region.

<u>If hcBroccoli doesn't shape in</u>

<u>circle:</u>

- ✤ 3' 5' distance adjustment
- + CG rich at 3' UTR
- + Elongate poly(A) tail

Mol Cell. **1998** Jul;2(1):135-40. *Journal of Cell Biology*, 15 Oct **2018**, 217(12):4124-4140

hcBroccoli transcriptions

3'

1. DNA template preparation

PCR

5'

+DNA polymerase

Double strand DNA template

2. Transcriptions

In vitro

A. PCR

Flash transcription kit

B. MAGIC express system Cell Lysate

- C. MAGIC system genetically encode hcBroccoli.
- 3. Characterizations: Seq, Gel, AFM...

https://ib.bioninja.com.au/standard-level/topic-3-genetics/35-genetic-modification-and/pcr.html

Biomaterials 156 (2018): 172-193

DNA templates designed for MAGIC system

Summary	-25 I	+1 ┌─→		
Simplest DNA template:		- INR	Broccoli	PAS CA
5'TCCTGAAGGGGGGGCTATAAAAGGGG	GGTGGGGG	CGCGAAC	CTCTGGC <mark>AGG</mark> AGCAA	AGGCGCC
ATGGCTGTGGAGGGGGGGABroccoliAG	TGCCTCTC	CTGGCCCI	GGAAGTTGCCTCTCC	AGTGCCC
ACCAGCCTTGTCCTAATAAAATTAAGT	TGCATCAT	TTTGTCTG	ACTAGGTGTCCTTCT3	
1 st optimization for transcription init	iation:			
5'TCCTGAASSRCGCCTATAWAARGGGR	RRR GCGCC	GAACCTCT	GGCAGGAGCAAAGG	N: A, T, C, or G
CGCCATGGCTGTGGAGGGCGGA	GGGGCGG/	ABroccoli-3	,	W: A or T
2 nd optimization for capping:				R: A or G
5'TCCTGAASSRCGCCTATAWAARGGGR	RRRGCGCC	GAACCTCT	GGC<mark>AGG</mark>AGCAAAGG	Y: C or T
CGCCATGGCTGTGGAGGCSARCSSAAC	CGSAGACG	GGGCGGA	Broccoli-3'	S: G or C
3 rd optimization for polyadenylation	1:			L

AIM2a&2b: Evaluate the functionality&stability of hcBroccoli

A. Evaluate the target binding ability

 <u>Rational:</u> Broccoli can bind to fluorophore DFHBI-1T and lead to large fluorescence signal.

B. Evaluate the stability of hcBroccoli

• **<u>Rational</u>**: Circularization and protein coating protections should stabilize the aptamer to achieve a longer functional time.

Camera: CoolSnap HQ2 CCD. *Air objective:* a ×20/ × 40. *Microscope:* Nikon Eclipse TE2000-E.

Excitation filter: 470 ± 20 nm. *Emission filter:* 525 ± 25 nm. *Dichroic mirror:* 495 nm.

Evaluation Method:

Fluorescence microscopy

Environment: 37 °C, 5% CO₂. Exposure time: 200-500 ms. <u>Analysis tool:</u> NIS-Elements software. <u>Fluorescence:</u> ImageJ measurements.

Front. Chem., 28 June **2016** https://rsscience.com/fluorescence-microscope/

Experiment designs:

- 1. Day1: Transfect the HEK293T cells with *different expression systems*.
- 2. Day 1~2: Subculture the cells.
- Day 2: Change the medium to FluoroBrite medium containing 40 µM DFHBI-1T.
- 4. Day 2: Live cell fluorescence images.

Expected outcomes:

- 1. Fluorescent signals from all experimental groups.
- 2. Longer duration time for Tornado system and MAGIC system.

International journal of molecular sciences 19.1 (**2018**): 44. *Nucleic Acids Research*, Volume 45, Issue 3, February **2017**, 1404–1415

AIM2b: Evaluate MAGIC system intracellular expression levels

- **Quantification of intracellular RNA concentrations**
- **Rational:** The more stable hcBroccoli can maintain their intracellular concentrations at relative higher levels.

NAT Biotechnol. 2019 Jun; 37(6): 667-675 https://www.bio-rad.com/featured/en/flow-cytometer.html

Evaluation Methods:

A. In-gel imaging: Transfect -> Culture -> Extraction > Gel image + quantification **B. Flow cytometry analysis:** Transfect -> Culture -> Harvest > LSRFortessa analysis

A. In-gel quantifications

Day 1: Transfect the HEK293T cells with different expression systems.

Day 1~2: Subculture the cells for 1~2 days.

Day 3: Add actD 6h before extractions.

Day3: Suspend cells using TrypLE. Quantify the diameter of HEK293T cell.

Day 3: Extract total RNAs using TRIzol LS.

Day 3: 1 µg Broccoli run with 10% denaturing PAGE gel.

Day 3: Imaging Broccoli with ChemiDoc MP. (470/30 nm excitation, 532/28 nm emission)

Day 3: Imaging total RNAs with SYBR stained

Gold gel. (302 nm excitation, 590/110 nm emission)

Day 3: Gel Band intensity is quantified in Image Lab software.

Expected outcome A:

- 1. Abundant hcBroccoli band.
- 2. Near endogenous levels **RNA** expression system

100 nt

Tornado tRNA

Day 3: FlowJo software analysis.

Expected outcome B:

High accumulations for hcBroccoli.

Expression system	Subset	Count
Null	Broccoli	~100
Linear	Broccoli	~5000
Tornado	Broccoli	~26000
MAGIC	Broccoli	<mark>~10⁴</mark>

488 [530 30]-A

AIM2c: Program MAGIC system for biosensing

AIM2d: Examine MAGIC system cytotoxicity

Service And A Service A Ser

- <u>Rational</u>: The terminal decorations to noncytotoxic Broccoli are endogenously existing.
- Evaluation Methods:
 - A. Cell proliferation rate characterizations.
 - B. In-gel retionic acid-inducible genel (RIG-I) analysis.

cells per field

đ

Quantity

A. Cell proliferation rate characterizations

Expected outcome: low levels of apoptosis.

- Day 1-2: Transfect the HEK293T cells with <u>different expression</u> <u>systems</u>.
- Day 3: Subculture the cells with
 1:4 and 1:8 onto plates.
- 3. Day4: count 1:4 cultured fluorescent/non-fluorescent cell numbers.
- 4. Day5: count 1:8 cultured fluorescent/non-fluorescent cell numbers.
- 5. Calculate time for cell to growth.

 Image: mail of the second is the second i

B. In-gel RIG-I analysis

- 1. Day 1-2: Transfect the HEK293T cells with <u>different</u> <u>expression systems</u>.
- 2. Day 3: 1 µg mL⁻¹ doxorubicin (anti-bacteria).
- 3. Lyse cells in RIPA buffer with Halt protease. And phosphatase inhibitor cocktail.
- 4. Separate proteins and analysis by PAGE.

Expected outcome:

Low levels of RIG-I from MAGIC system.

A Safe and High-efficient MAGIC

expression system has been developed for diverse applications in mammalian cells!

Cell culture, transfection and In-gel imaging

AIM3a: Develop more general MAGAIC systems --- atMAGIC

Substitution of the strong approximation of the strong

A. Cap independent circularization

- Viruses.
- Replace cap-recognition site with a ribosome entry site (IRES).
- Form 3'-PABP-eIF4G-IRES-5' interactions

Pros:

- 1. Offer a unique opportunity to have cap-independent circularization.
- 2. May escape from the cap-required class II transcriptions. Cons:
- 1. IRESs are super long with the known minimal length is 157 nt, making the 5'-UTR too long.
- 2. May trigger immune response, a mechanism always adopt by viruses. *Int J Mol Sci.* 2020 Nov; 21(22): 8591. *Biotechniques* 41.3 (2006): 283-292.

AIM3b: Develop more general MAGAIC systems --- cgMAGIC

B. Poly(A) independent circularization

- Histone mRNA
- Replace poly(A) tail with a conserved stem-Loop
- Forming 3'-SLBP-MIF4G-eIF3-eIF4F-5' interactions

i.e., 3'-CCAAAGGCTCTTTTCAGAGCCAGGGA-5'

Science. **2013** Jan 18;339(6117) *Biotechniques* 41.3 (**2006**): 283-292.

Pros:

- 1. No need to have a long poly(A) tail at 3' end.
- 2. No need to optimize the poly(A) tail length.
- 3. The stem-loop can be engineered to have a couple function with aptamers.
- 4. Give us an alternative idea that we can also decorate 3'-end with a poly(U) tail.

Cons:

- 1. Always go along with rapid degradations.
- 2. Maximum accumulation level is SLBP dependent.
- 3. May not apply to all cell lines.

AIM3c: Develop more general MAGAIC systems --- gMAGIC

C. RNA-solely circularization

- Plant viruses
- Replace 3' poly(A) with 3' cap-independent translation enhancer
- Replace 5' cap with a hairpin.
- Forming RNA-RNA kissing interactions

Virus	CITE Type	3' CITE sequence ^a	5' hairpin sequence ^a	5' hairpin location	
		Carmovirus			
SCV	PTE	CUGCCA	UGGCAG	5' ORF	
PFBV	PTE	CUGCCA	UGGCAG	5' ORF	
CarMV	PTE	CUGCCA	UGGCGG	5' terminus	
HnRSV	PTE	CUGCCA	UGGCAG	5' ORF	
HCRSV	PTE	GCCA	UGGC	5' terminus	
GaMV	PTE	UUGGCG	CGCCAA	5' terminus	
PSNV	PTE	UUGGCG	GCCA	5′ UTR	
MNSV	ISS	UGGCU	AGCCA	5' ORF	
TGP-carmo	ISS	CGGCAA	UUGCCG	5' terminus	
CbMV	TED-like	CUGCCA	UGGCAG	5' ORF	
PLPV	TED-like	CGCCAA	UUGGCG	5' ORF	
PCRPV	TED-like	CGCCAA	UUGGCG	5' ORF	
Umbravirus					
PEMV	kl-TSS	UCGCCA	UGGCGA	5' ORF	
		Panicovirus			
PMV	PTE	UUGCAG	CU <mark>GCA</mark> A	5' terminus	
CMMV	PTE	UUGCCG	CG <mark>GCA</mark> A	5' terminus	
		Necrovirus			
STNV	TED	UUCCUG	CAGGAA	5' terminus	
TNV-D	BTE	UGGU	ACCA	5' terminus	
OLV-1	BTE	UGGUG	UACCA	5' terminus	
LWSV	BTE	UGGU	ACCA	5' terminus	

Pros:

- 1. No protein-mediation required.
- 2. No decoration required. May escape from the class II transcriptions.
- 3. The conserved sequences are not very long.
- Cons:
- 1. Only find in plant viruses.
- 2. With no protein protections, and no poly(A) tail or cap decorations, lack stability.
- 3. May cause immune response.

(All extended MAGIC systems can be characterized follow Aim1 and Aim2 protocols.)

Carmovirus TED-like structures

Overall, easy-implement MAGIC expression system!

Characterizations.

2

Acknowledgment

- Prof. Jianhan Chen
- o Prof. Min Chen
- o Prof. Scott Auerbach
- 🚳 Prof. Greg Grason
- Chen Lab Members:
- 凾 Dr. Zhiguang Jia
- 🗻 Xiping Gong,
- 凾 Erik Nordquist
- 画 Jian Huang
- 🐱 Samantha Schultz
- 🐱 Ryan Pham
- ✤ My friend:
- 凾 Ru Zheng

